Abstract
During the impregnation of reinforcement fabrics in liquid composite molding processes, the flow within fiber bundles and the channels between the fiber bundles usually advances at different velocities. This so-called “dual-scale flow” results in void formation inside the composite material and has a negative effect on its mechanical properties. Semi-empirical models can be applied to calculate the extent of the dual-scale flow. In this study, a methodology is presented that stops the impregnation of reinforcement fabrics at different filling levels by using a photo-reactive resin system. By means of optical evaluation, the theoretical calculation models of the dual-scale flow are validated metrologically. The results show increasingly distinct dual-scale flow effects with increasing pressure gradients. The methodology enables the measurability of microscopic differences in flow front progression to validate renowned theoretical models and compare simulations to measurements of applied injection processes.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献