Affiliation:
1. Concordia Center for Composites, Department of Mechanical and Industrial Engineering, Concordia University, Canada
Abstract
Effect of thermally induced microcracks on mechanical performance of a space grade laminated sandwich panel is investigated. A simple non-contact setup using liquid nitrogen is developed to subject the material to low temperature of −170℃ with cooling rate of 24℃/min. Then the samples are exposed to the elevated temperature of 150℃ inside oven. Microcracks formation and propagation are monitored through microscopic observation of cross-section during the cycling. Flatwise tensile test is performed after a number of cycles. A correlation is made between number of cycles and flatwise mechanical strength after quantifying the microcracks. It is observed that the crack formation gets saturated at about 40 cycles, avoiding the need to conduct more thermal cycles. Microcrack formation both at the free edge and middle of laminate was observed. The crack density at the middle was comparatively less than the ones found on the free edges. Results for non-contact cooling are compared with samples from direct nitrogen contact cooling. Microscopic inspection and flatwise test show differences between contact and non-contact cooled samples. Flatwise tensile strength for non-contact cooled samples shows 15% reduction, while the contact cooled samples have about 30% decrease in bond strength. A 3D finite element analysis is conducted to qualitatively identify the location of stress concentration which can be possible sites of crack formation. Good agreement is observed between the model and experimental results.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献