Effects of temperature and thermal cycles on the mechanical properties of expanded polystyrene foam

Author:

Tahir Muhammad Naeem1,Hamed Ehab1ORCID

Affiliation:

1. Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, AU-NSW, Australia

Abstract

Understanding the effects of high temperature and thermal cycles on the mechanical properties of expanded polystyrene (EPS) foam is critical for its use in sandwich panels. This paper presents an experimental investigation of these effects in typical environmental conditions that exist in construction applications. A total of 117 small specimens were cut from metal-faced sandwich panels with EPS core and were exposed to different numbers of thermal cycles and/or sustained high temperatures. The specimens were then loaded under compression, tension, and four-point bending for evaluating the degradation of the mechanical properties of the foam. The thermal cycles reflect typical surface temperature during daily summer conditions, with a period of 24 h each and with a temperature varying between 24°C to 80°C. The results show that the modulus of elasticity of EPS foam in compression reduced by about 38% after exposure to thermal cycles for 45 days, whereas the tensile and shear moduli reduced by about 5.7% and 13.8%, respectively. Exposure to sustained high temperature after thermal cycles led to larger degradation of the elastic and shear moduli in the range of 38%–50%. These degradations can lead to early failures in applications that rely on the EPS foam as a structural component like in insulating sandwich panels.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3