Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures

Author:

Shenghu Cao 1,Zhis WU 2,Xin Wang 1

Affiliation:

1. Department of Urban and Civil Engineering, Ibaraki University Nakanarusawa 4-12-1, Hitachi 316-8511, Japan

2. Department of Urban and Civil Engineering, Ibaraki University Nakanarusawa 4-12-1, Hitachi 316-8511, Japan,

Abstract

The performance of fiber reinforced polymer (FRP) composites at high temperatures is a serious concern that needs investigation before the incorporation of these composites into important engineering structures. This article presents an experimental study on the tensile properties of carbon fiber reinforced polymer (CFRP) sheets, hybrid carbon/glass fiber reinforced polymer (C/GFRP) sheets and hybrid carbon/basalt fiber reinforced polymer (C/BFRP) sheets at different temperatures. The specimens of FRP sheets were tested at temperatures ranging from 16 to 200°C, while corresponding dry fiber sheets (without resin impregnation) were tested at 16°C as a reference. The test results show that the tensile strength of carbon fibers in different FRP sheets decreases significantly with increasing temperature, and remains almost stable at an ultimate value (3000 MPa) after the polymer exceeds its glass transition temperature (T g), which is higher than the tensile strength of the non-impregnated fiber sheets at room temperature. At elevated temperatures, the hybridization of fibers can reduce the scatter of the tensile strengths of CFRP composites. Additionally, the tensile strength of CFRP sheets with different dimensions is significantly different, but size dependence is independent of temperature. Furthermore, elevated temperature also influences the failure modes of FRP composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference22 articles.

1. Use of FRP composites in civil structural applications

2. Karbhari, V.M. (1998). Introduction, Use of Composite Materials in Civil Infrastructure in Japan, pp. 1-4, International Technology Research Institute, Maryland.

3. The tensile behavior of carbon fibers at high temperatures up to 2400 °C

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3