An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems

Author:

Wang Huimin1,Li Zhaojun Steven2ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China

2. Department of Industrial Engineering and Engineering Management, Western New England University, Springfield, MA, USA

Abstract

By focusing on the accuracy limitations of the naive Bayesian classifier in the transient stability assessment of power systems, a tree augmented naive Bayesian (TAN) classifier is adopted for the power system transient stability assessment. The adaptive Boosting (AdaBoost) algorithm is used in the TAN classifier to form an AdaBoost-based tree augmented naive Bayesian (ATAN) classifier for further classification performance improvement. To construct the ATAN classifier, eight attributes that reasonably reflect the transient stability or transient instability of a power system are selected as inputs of the proposed classifier. In addition, the class-attribute interdependence maximization (CAIM) algorithm is used to discretize the attributes. Then, the operating mechanism of the power system is used to obtain the dependencies between the attributes, and the parameters of the ATAN classifier are learned according to the Bayes’ theorem and the criterion of maximizing a posterior estimation. Four evaluation indicators of the ATAN classifier are used, that is, the value of Kappa, the area under the receiver operating characteristic curve (AUC), F1 score, and the average evaluation indicator. Lastly, experiments are implemented on the IEEE 3-generator 9-bus system and IEEE 10-generator 39-bus system. The simulation results show that the ATAN classifier can significantly improve the classification performance of the transient stability assessment of the power system.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3