Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5

Author:

Zhang Heng1ORCID,Shao Faming1ORCID,He Xiaohui1ORCID,Zhang Zihan1,Cai Yonggen1,Bi Shaohua1

Affiliation:

1. College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China

Abstract

In this paper, an object detection and recognition method based on improved YOLOv5 is proposed for application on unmanned aerial vehicle (UAV) aerial images. Firstly, we improved the traditional Gabor function to obtain Gabor convolutional kernels with better edge enhancement properties. We used eight Gabor convolutional kernels to enhance the object edges from eight directions, and the enhanced image has obvious edge features, thus providing the best object area for subsequent deep feature extraction work. Secondly, we added a coordinate attention (CA) mechanism to the backbone of YOLOv5. The plug-and-play lightweight CA mechanism considers information of both the spatial location and channel of features and can accurately capture the long-range dependencies of positions. CA is like the eyes of YOLOv5, making it easier for the network to find the region of interest (ROI). Once again, we replaced the Path Aggregation Network (PANet) with a Bidirectional Feature Pyramid Network (BiFPN) at the neck of YOLOv5. BiFPN performs weighting operations on different input feature layers, which helps to balance the contribution of each layer. In addition, BiFPN adds horizontally connected feature branches across nodes on a bidirectional feature fusion structure to fuse more in-depth feature information. Finally, we trained the overall improved YOLOv5 model on our integrated dataset LSDUVD and compared it with other models on multiple datasets. The results show that our method has the best convergence effect and mAP value, which demonstrates that our method has unique advantages in processing detection tasks of UAV aerial images.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3