A model for partially dependent component damage fragilities in seismic risk analysis

Author:

Baker Jack W12ORCID,Almeter Ed1,Cook Dustin3ORCID,Liel Abbie B4ORCID,Haselton Curt1

Affiliation:

1. Haselton Baker Risk Group, LLC, Chico, CA, USA

2. Stanford University, Stanford, CA, USA

3. National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

4. University of Colorado Boulder, Boulder, CO, USA

Abstract

This article proposes a model to quantify dependencies in component damage in the Federal Emergency Management Agency (FEMA) P-58 seismic performance assessment methodology and to simulate damage realizations with the desired dependencies. The model is compatible with the prior FEMA P-58 procedure and can quantify more realistic dependencies in component damage with only minor changes to the calculation algorithm and model parameters. This article introduces the proposed model and compares it with the prior procedure. Example calculations are then used to illustrate the quantitative impacts of component damage dependencies on building-level performance metrics. The model is relatively simple to conceptualize and parameterize, so that the degree of dependency can be easily estimated and documented. Given the improved conceptual framing of the problem, and the significant changes it sometimes produces in building-level performance predictions, this model represents an improvement to the general FEMA P-58 seismic performance assessment methodology.

Funder

Federal Emergency Management Agency

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3