Impact of ground motion uncertainty evolution from post-earthquake data on building damage assessment

Author:

Lozano Jorge-Mario1ORCID,Tien Iris1ORCID,Nichols Elliot1,Frost J. David1

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Accurate damage assessment after an earthquake is crucial for effective emergency response. Using ground motion information enables rapid building damage assessment when detailed damage data are unavailable. While uncertainty in earthquake parameters plays a significant role in the accuracy of rapid estimations, it is usually treated as a constant parameter rather than as a dynamic parameter that considers the amount of ground motion data collected that evolve over time. This work investigates the impact of incorporating evolving ground motion uncertainty in ground motion estimations from US Geological Survey’s (USGS) ShakeMap on post-disaster damage assessments from two methodologies: the revised Thiel–Zsutty (TZR) model and Federal Emergency Management Agency’s (FEMA) Hazus. Using data from the 2020 Indios earthquake in Puerto Rico and the 2014 Napa earthquake, we find that changes in uncertainty in estimates of peak ground acceleration reach 65% between early and late versions of the ShakeMap. We propose a process to integrate this evolution with the two damage assessment methodologies through a Monte Carlo simulation-based approach, demonstrating that it is critical to introduce dynamic ground motion uncertainty in the damage assessment process to avoid propagating unreliable measures. Both methodologies show that resulting damage estimates can be characterized by narrower distributions, indicative of reduced uncertainty and increased precision in damage estimates. For the TZR model, an improved estimate of post-disaster loss is achieved with narrower bounds in distributions of expected high scenario loss. For Hazus, the results show potential changes in the most probable damage state with an average change of 13% in the most probable damage state. The described methodology also demonstrates how uncertainty in the resulting damage state distributions can be reduced compared with the use of the current Hazus methodology.

Funder

National Institute of Standards and Technology

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3