Practical limitations of earthquake early warning

Author:

Wald David J1ORCID

Affiliation:

1. U.S. Geological Survey, Golden, CO, USA

Abstract

Earthquake early warning (EEW) entails detection of initial earthquake shaking and rapid estimation and notification to users prior to imminent, stronger shaking. EEW (ShakeAlert Phase 1, version 2.0) went operational in California in October 2019 and is coming to the rest of the U.S. West Coast. But what are the technical and social challenges to delivering actionable information on earthquake shaking before it arrives? Although there will be tangible benefits, there are also limitations. Basic seismological principles, alert communication challenges, and potential response actions, as well as substantial lessons learned from the use of EEW in Japan, point to more limited opportunities to warn and protect than perhaps many expect. This is in part because potential warning times vary by region and are influenced by tectonic environment, hypocentral depth, and the fault’s proximity to the alert user. For the U.S. West Coast, particularly for crustal earthquakes, warning times are shorter—and possible mitigation actions are likely to be less effective—than often maintained. Nevertheless, EEW is an additional arrow in the quiver of earthquake information tools available in the service of earthquake risk reduction. What is called for, then, is transparency and balance in the EEW discussion: along with its potential, the acknowledgment of EEW’s inherent and practical limitations is needed. Recognizing these limitations could, in fact, make EEW implementation more successful as part of a holistic earthquake mitigation strategy, where its role among other earthquake information tools is quite natural.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3