GRAPES: Earthquake Early Warning by Passing Seismic Vectors Through the Grapevine

Author:

Clements T.1ORCID,Cochran E. S.2ORCID,Baltay A.1ORCID,Minson S. E.1ORCID,Yoon C. E.2ORCID

Affiliation:

1. U.S. Geological Survey Earthquake Science Center Moffett Field CA USA

2. U.S. Geological Survey Earthquake Science Center Pasadena CA USA

Abstract

AbstractEstimating an earthquake's magnitude and location may not be necessary to predict shaking in real time; instead, wavefield‐based approaches predict shaking with few assumptions about the seismic source. Here, we introduce GRAph Prediction of Earthquake Shaking (GRAPES), a deep learning model trained to characterize and propagate earthquake shaking across a seismic network. We show that GRAPES’ internal activations, which we call “seismic vectors”, correspond to the arrival of distinct seismic phases. GRAPES builds upon recent deep learning models applied to earthquake early warning by allowing for continuous ground motion prediction with seismic networks of all sizes. While trained on earthquakes recorded in Japan, we show that GRAPES, without modification, outperforms the ShakeAlert earthquake early warning system on the 2019 M7.1 Ridgecrest, CA earthquake.

Publisher

American Geophysical Union (AGU)

Reference70 articles.

1. Deployment of new strong motion seismographs of k‐net and kik‐net. Earthquake Data in Engineering Seismology: Predictive Models;Aoi S.;Data Management and Networks,2011

2. ShakeAlert Earthquake Early Warning System Performance during the 2019 Ridgecrest Earthquake Sequence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3