Affiliation:
1. Nankai University, China
Abstract
Compared with coarse-grained forecasting, fine-grained tourism demand forecasting is a more challenging task, but research on this issue is very scarce. To address this issue, a decomposition ensemble deep learning model is proposed by integrating CEEMDAN, CNNs, LSTM networks, and AR models. The CEEMDAN can decompose complex tourism demand data into multiple components with simpler characteristics, thereby reducing the complexity of forecasting. The CNNs and LSTM networks can fully capture the locally recurring patterns and the long-term dependencies of the components obtained by CEEMDAN. The AR model can capture the scale of tourism demand data, which can overcome the problem that the output scale of the deep neural networks (i.e., CNNs and LSTM networks) is not sensitive to the scale of the inputs. The effectiveness of the proposed model is verified by comparing with five benchmark models using real-time data on tourist volumes at two attractions.
Funder
Liberal Arts Development Fund of Nankai University
National Natural Science Foundation of China
Subject
Tourism, Leisure and Hospitality Management,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献