Affiliation:
1. College of Tourism and Service Management, Nankai University, Tianjin, China
Abstract
Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are selected as the forecasting variables. To fully capture the relationship between these forecasting variables and actual tourism demand automatically, an ensemble of long short-term memory (LSTM) networks is proposed with a correlation-based predictor selection (CPS) algorithm. The effectiveness of the proposed method is verified in daily tourism demand forecasting for the Huangshan Mountain Area, benchmarked against 11 forecasting methods. This study contributes to the literature by (1) introducing the use of big data in daily tourism demand forecasting, (2) proposing an ensemble of LSTM networks for daily tourism demand forecasting, and (3) providing an effective predictor selection algorithm in ensemble learning.
Funder
science foundation of ministry of education of china
China Postdoctoral Science Foundation
national natural science foundation of china
nankai university
fundamental research funds for the central universities
Subject
Tourism, Leisure and Hospitality Management,Transportation,Geography, Planning and Development
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献