EfficientDet for fabric defect detection based on edge computing

Author:

Song Shaojun1,Jing Junfeng1ORCID,Huang Yanqing1,Shi Mingyang1

Affiliation:

1. College of Electronics and Information, Xi’an Polytechnic University, Xi’an, China

Abstract

The productivity of textile industry is positively correlated with the efficiency of fabric defect detection. Traditional manual detection methods have gradually been replaced by deep learning algorithms based on cloud computing due to the low accuracy and high cost of manual methods. Nonetheless, these cloud computing-based methods are still suboptimal due to the data transmission latency between the end devices and the cloud. To facilitate defect detection with more efficiency, a low-latency, low power consumption, easy upgrade, and automatical visual inspection system with the help of edge computing are proposed in this work. Firstly, the method uses EfficientDet-D0 as the detection algorithm, integrating the advantages of lightweight and scalable and can suit the resource-constrained edge device. Secondly, we performed data augmentations on five fabric datasets and verified the adaptability of the model in different types of fabrics. Finally, we transplanted the trained model to the edge device NVIDIA Jetson TX2 and optimized the model with TensorRT to make it detection faster. The performance of the proposed method is evaluated in five fabric datasets. The detection speed is up to 22.7 frame per second (FPS) on the edge device Jetson TX2. Compared with the cloud-based method, the response time is reduced by 2.5 times, with the capability of real-time industrial defect detection.

Funder

Shaanxi Provincial Education Department

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3