Evaluation of Multiple (3-Cycle) Decontamination Processing for Filtering Facepiece Respirators

Author:

Bergman Michael S.1,Viscusi Dennis J.2,Heimbuch Brian K.3,Wander Joseph D.4,Sambol Anthony R.5,Shaffer Ronald E.2

Affiliation:

1. URS Corporation, Pittsburgh, Pennsylvania

2. National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, Pennsylvania

3. Applied Research Associates, Tyndall Air Force Base, Florida

4. Air Force Research Laboratory, Tyndall Air Force Base, Florida

5. University of Nebraska Medical Center, Omaha, Nebraska

Abstract

Disposable N95 filtering facepiece respirators (FFRs) certified by the National Institute for Occupational Safety and Health (NIOSH) are widely used by healthcare workers to reduce exposures to infectious biological aerosols. There is currently major concern among public health officials about a possible shortage of N95 FFRs during an influenza pandemic. Decontamination and reuse of FFRs is a possible strategy for extending FFR supplies in an emergency; however, the NIOSH respirator certification process does not currently include provisions for decontamination and reuse. Recent studies have investigated the laboratory performance (filter aerosol penetration and filter airflow resistance) and physical integrity of FFRs following one-cycle (1X) processing of various decontamination treatments. The studies found that a single application of some methods did not adversely affect laboratory performance. In the event that healthcare facilities experience dramatic shortages of FFR supplies, multiple decontamination processing may become necessary. This study investigates three-cycle (3X) processing of eight different methods: ultraviolet germicidal irradiation, ethylene oxide, hydrogen peroxide gas plasma, hydrogen peroxide vapor, microwave-oven-generated steam, bleach, liquid hydrogen peroxide, and moist heat incubation (pasteurization). A four-hour 3X submersion of FFR in deionized water was performed for comparison (control). Following 3X treatment by each decontamination and control method, FFRs were evaluated for changes in physical appearance, odor, and laboratory filtration performance. Only the hydrogen peroxide gas plasma treatment resulted in mean penetration levels > 5% for four of the six FFR models; FFRs treated by the seven other methods and the control samples had expected levels of filter aerosol penetration (< 5%) and filter airflow resistance. Physical damage varied by treatment method. Further research is still needed before any specific decontamination methods can be recommended.

Publisher

SAGE Publications

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3