Filter Performance of N99 and N95 Facepiece Respirators Against Viruses and Ultrafine Particles

Author:

Eninger Robert M.1,Honda Takeshi1,Adhikari Atin1,Heinonen-Tanski Helvi2,Reponen Tiina1,Grinshpun Sergey A.1

Affiliation:

1. Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA

2. Department of Environmental Science, University of Kuopio, Finland

Abstract

Abstract The performance of three filtering facepiece respirators (two models of N99 and one N95) challenged with an inert aerosol (NaCl) and three virus aerosols (enterobacteriophages MS2 and T4 and Bacillus subtilis phage)—all with significant ultrafine components—was examined using a manikin-based protocol with respirators sealed on manikins. Three inhalation flow rates, 30, 85, and 150 l min−1, were tested. The filter penetration and the quality factor were determined. Between-respirator and within-respirator comparisons of penetration values were performed. At the most penetrating particle size (MPPS), >3% of MS2 virions penetrated through filters of both N99 models at an inhalation flow rate of 85 l min−1. Inhalation airflow had a significant effect upon particle penetration through the tested respirator filters. The filter quality factor was found suitable for making relative performance comparisons. The MPPS for challenge aerosols was <0.1 μm in electrical mobility diameter for all tested respirators. Mean particle penetration (by count) was significantly increased when the size fraction of <0.1 μm was included as compared to particles >0.1 μm. The filtration performance of the N95 respirator approached that of the two models of N99 over the range of particle sizes tested (∼0.02 to 0.5 μm). Filter penetration of the tested biological aerosols did not exceed that of inert NaCl aerosol. The results suggest that inert NaCl aerosols may generally be appropriate for modeling filter penetration of similarly sized virions.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Reference49 articles.

1. Using non-uniform electric fields to accelerate the transport of viruses to surfaces from media of physiologal ionic strength;Aristides;Langmuir,2007

2. Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles;Balazy;Ann Occup Hyg,2006

3. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks?;Balazy;Am J Infect Control,2006

4. Influence of particle shape on filtration processes;Boskovic;Aerosol Sci Technol,2005

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3