Ultrastructural localization of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) to the abluminal plasma membrane and vesiculovacuolar organelles of tumor microvascular endothelium.

Author:

Qu-Hong ,Nagy J A,Senger D R,Dvorak H F,Dvorak A M

Abstract

Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is a cytokine secreted by many animal and human tumors, activated macrophages, keratinocytes, rheumatoid synovial cells, embryonic tissues, and by cultured epithelial and mesenchymal cell lines. It acts selectively on vascular endothelial cells to increase their permeability to circulating macromolecules and to stimulate their replication. Although not detectably expressed by vascular cells in the human and animal tumors we have studied, VPF/VEGF accumulates in the microvessels supplying tumors and certain inflammatory reactions in which VPF/VEGF is also overexpressed. Light microscopic immunohistochemistry lacked the resolution necessary to localize VPF/VEGF precisely in such vessels. Therefore, we used a pre-embedding immunocytochemical method to localize VPF/VEGF at the ultrastructural level in the new blood vessels that are elicited in the peritoneal walls of mice bearing a transplantable mouse ascites tumor of ovarian origin. Intense immunostaining for VPF/VEGF was observed on the abluminal plasma membrane of tumor-associated microvascular endothelial cells and in vesiculovacuolar organelles (VVOs) present in these same endothelial cells. (VVOs are recently described cytoplasmic organelles present in tumor vascular endothelium that provide an important pathway for extravasation of circulating macromolecules.) In contrast to labeling of the abluminal plasma membrane and VVO vesicles and vacuoles, endothelial cytoplasmic organelles, such as multivesicular bodies and Weibel-Palade bodies, and the underlying basal lamina, did not stain with antibodies to VPF/VEGF. The distribution of VPF/VEGF here described corresponds to that anticipated for high-affinity VFP/VEGF receptors, although binding of VPF/VEGF to other endothelial cell surface structures, such as plasma membrane proteoglycans, is also a possibility.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3