Improving Statistical Analysis in Team Science: The Case of a Bayesian Multiverse of Many Labs 4

Author:

Hoogeveen Suzanne1ORCID,Berkhout Sophie W.2,Gronau Quentin F.3ORCID,Wagenmakers Eric-Jan1ORCID,Haaf Julia M.1ORCID

Affiliation:

1. Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands

2. Department of Methodology and Statistics, Utrecht University, Utrecht, The Netherlands

3. School of Psychological Sciences, University of Newcastle, Callaghan, Australia

Abstract

Team-science projects have become the “gold standard” for assessing the replicability and variability of key findings in psychological science. However, we believe the typical meta-analytic approach in these projects fails to match the wealth of collected data. Instead, we advocate the use of Bayesian hierarchical modeling for team-science projects, potentially extended in a multiverse analysis. We illustrate this full-scale analysis by applying it to the recently published Many Labs 4 project. This project aimed to replicate the mortality-salience effect—that being reminded of one’s own death strengthens the own cultural identity. In a multiverse analysis, we assess the robustness of the results with varying data-inclusion criteria and prior settings. Bayesian model comparison results largely converge to a common conclusion: The data provide evidence against a mortality-salience effect across the majority of our analyses. We issue general recommendations to facilitate full-scale analyses in team-science projects.

Publisher

SAGE Publications

Subject

General Psychology

Reference78 articles.

1. Aust F., Barth M. (2022). papaja: Prepare reproducible APA journal articles with R Markdown (R package Version 0.1.1). https://github.com/crsh/papaja

2. Barth M. (2021). tinylabels: Lightweight variable labels (R package Version 0.2.2). https://cran.r-project.org/package=tinylabels

3. Bates D., Maechler M., Jagan M. (2022). Matrix: Sparse and dense matrix classes and methods (R package Version 1.4-1). https://CRAN.R-project.org/package=Matrix

4. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3