Abstract
Replicable and reliable research is essential for cumulative science and its applications in practice. This article examines the quality of research on dishonesty using a sample of 286 hand-coded test statistics from 99 articles. Z-curve analysis indicates a low expected replication rate, a high proportion of missing studies, and an inflated false discovery risk. Test of insufficient variance (TIVA) finds that 11/61 articles with multiple test statistics contain results that are ``too-good-to-be-true''. Sensitivity analysis confirms the robustness of the findings. In conclusion, caution is advised when relying on or applying the existing literature on dishonesty.
Reference62 articles.
1. Abeler, J., Nosenzo, D., & Raymond, C. (2019). Preferences for truth-telling. Econometrica, 87(4), 1115–1153. https://doi.org/10.3982/ECTA14673
2. Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452–454. https://doi.org/10.1038/533452a
3. Bartoš, F. (2019). Faktory asociované s podvádˇením [Bachelor’s thesis]. Univerzita Karlova, Filozofická fakulta. https://dspace.cuni.cz/handle/20.500.11956/107893
4. Bartoš, F., Maier, M., Shanks, D. R., Stanley, T., Sladekova, M., & Wagenmakers, E.-J. (2023). Meta-analyses in psychology often overestimate evidence for and size of effects. Royal Society Open Science, 10(7), 1–12. https://doi.org/10.1098/rsos.230224
5. Bartoš, F., Maier, M., Wagenmakers, E.-J., Doucouliagos, H., & Stanley, T. D. (2022). Robust Bayesian meta-analysis: Model-averaging across complementary publication bias adjustment methods. Research Synthesis Methods, 14(1), 99–116. https://doi.org/10.1002/jrsm.1594
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献