Influence of acoustic reflections on flutter stability of an embedded blade row

Author:

Zhao Fanzhou1,Nipkau Jens2,Vahdati Mehdi1

Affiliation:

1. Mechanical Engineering Department, Imperial College London, London, UK

2. Compressor Aeroelasticity, Rolls-Royce Deutschland, Dahlewitz, Germany

Abstract

The use of blisks is becoming more common in modern aero-engine designs. Such structures have very low mechanical damping and hence are more susceptible to flutter instability. Therefore, accurate prediction of blade aerodynamic damping in a multi-row environment becomes vital. The aim of this work is to understand the effects of acoustic reflections on flutter stability of an embedded rotor in a multi-stage compressor. To achieve this goal, flutter analysis of an embedded rotor blade in a high pressure compressor is undertaken using a validated 3D unsteady RANS solver with mesh movement. In the first part of this work, flutter computations are performed on the rotor with and without the presence of its adjacent blade rows and the influence of reflections on aerodynamic damping of the embedded row is studied. In the second part of this work, reflective boundary conditions are used to reflect pressure waves from known locations. A wave-splitting procedure is performed to split the unsteady pressure into an outgoing wave and a reflected wave. Using this technique a relationship between the phase of the reflected wave and the susceptibility to flutter is established.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3