A Non-Linear Aeroelasticity Analysis of a Fan Blade Using Unstructured Dynamic Meshes

Author:

Vahdati M1,Imregun M1

Affiliation:

1. Centre of Vibration Engineering, Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, London

Abstract

The main objective of this paper is to present a methodology for the three-dimensional aeroelasticity analysis of turbomachinery blades using an unstructured compressible Navier-Stokes solver for the fluid and a modal model for the structure. The basic fluid solver is constructed in the form of a central difference scheme with explicitly added artificial dissipation which is based upon the fourth- and second-order differences of the solution. The temporal discretization uses an implicit time integration scheme based on a Jacobi relaxation procedure. The structural modes of vibration are determined via a finite element model and the mode shapes are interpolated on to the fluid mesh in a manner that is consistent with general unstructured tetrahedral grids. A spring analogy algorithm that can move the mesh according to the instantaneous shape of a deforming blade has been developed for the accurate tracking of the solid boundaries without creating excessive grid distortions. The performance of the resulting system was examined by considering the aeroelastic behaviour of NASA Rotor 67 fan blade and predictions were compared to experimental results wherever possible. Using a three-dimensional cyclic symmetry model, the tip leading edge time histories were predicted under peak-efficiency and near-stall conditions, and the corresponding aeroelastic natural frequencies and aerodynamic damping values were determined. The blade was found to be stable in all cases considered.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3