Development of a surrogate model for uncertainty quantification of compressor performance due to manufacturing tolerance

Author:

Rendu Quentin1,Salles Loic1

Affiliation:

1. Imperial College London, Exhibition Rd, London SW7 2BX, United Kingdom

Abstract

In gas turbines and jet engines, stagger angle and tip gap variations between adjacent blades lead to the deterioration of performance. To evaluate the effect of manufacturing tolerance on performance, a CFD-based uncertainty quantification analysis is performed in this work. However, evaluating dozens of thousands of rotor assembly through CFD simulations would be computationally prohibitive. A surrogate model is thus developed to predict compressor performance given an ordered set of manufactured blades. The model is used to predict the influence of tip gap and stagger angle variations on maximum isentropic efficiency. The results confirm that the best arrangement is obtained by minimizing the stagger angle variation between adjacent blades, and by maximizing the tip gap variation. Another finding is that the best arrangement yields the lowest variability, the range of maximum efficiency being 4 times sharper (resp. 2 times) than worst arrangement for stagger angle variations (resp. tip gap variations). Not measuring manufacturing tolerance, or not specifying any strategy for the blade arrangement, lead to variability as large as the worst arrangement.

Publisher

Global Power and Propulsion Society

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering

Reference17 articles.

1. Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study

2. Non-deterministic cfd simulation of a transonic compressor rotor;Gopinathrao N.,2009

3. Genetic algorithm based traveling salesman problem. Retrieved On December 12, 2018 From MATLAB Central File Exchange;Kirk J.,2014

4. Effect of manufacturing tolerances on the turbine blades;Kolmakova D.,2014

5. Impact of Manufacturing Variability on Multistage High-Pressure Compressor Performance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3