Instability analysis for a centrifugal pump with straight inlet pipe using partially averaged Navier–Stokes model

Author:

Ye Weixiang1ORCID,Qian Zhongdong2ORCID,Huang Renfang3,Li Xiaojun4ORCID,Zhu Zuchao4ORCID,Luo Xianwu1

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing, China

2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

3. Key Laboratory for Mechanics in Fluid Solid Coupling System, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

4. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

The current study numerically investigates the flow instability under several part-load conditions in a centrifugal pump with a straight inlet pipe to explore the underlying relationship between a positive slope phenomenon and internal flow using a partially averaged Navier–Stokes model. The model was validated by comparing the hydraulic performance and averaged flow in the impeller between the numerical results and experimental data of a tested pump. The internal flows in pumps have been intensively investigated based on Batchelor vortex family, Rayleigh–Taylor criterion, entropy generation rate, and energy equation to analyze the flow instability from different aspects. The simulation results using partially averaged Navier–Stokes model are acceptable due to the good agreement with the experimental data for the tested pump. No matter the geometry of the inlet pipe, the pre-swirling flows in the inlet pipe are in the convective instability region. Under the part-load condition of φ = 0.5 φbep, the axial vorticity coefficient is affected by the geometry of the inlet pipe. However, under the part-load condition with rotating stall, e.g. φ = 0.78 φbep, the flow in the inlet pipe is affected by the unstable flow in the pump impeller. For the pump with a straight inlet pipe, the vortex inside the blade-to-blade passage is in a stable state according to Rayleigh–Taylor criterion under the condition of φ = 0.5 φbep. However, the vortex in the blade-to-blade passage is in an unstable state due to centrifugal instability under those operation conditions with rotating stall cells in the impeller, and the dominant oscillations are dependent on the propagation of rotating stall cells. Finally, head loss analysis based on energy equations elucidates that turbulent kinetic energy production term is predominant in the head loss in pump impeller. The present results are helpful for better understanding of the unstable flows and positive slope phenomenon for centrifugal pumps.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3