Improving part-load performance of combined-cycle gas turbines by optimizing variable geometry control strategy for compressor and power turbine combined adjustment

Author:

Xie Qi-an1,Wu Hu1ORCID,Deng Li-ping1

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an, China

Abstract

The variable geometry methods currently used in combined-cycle gas turbines are compressor variable inlet guide vanes (VIGV) or power turbine variable area nozzles (VAN). On this basis, this study presents the optimal variable geometry control strategy for compressor and power turbine combined adjustment ([Formula: see text]) using the Differential Evolutionary Algorithm with the LM2500+ gas turbine. The aim is to further improve the part-load performance of the combined-cycle gas turbine. Firstly, a part-load performance prediction model for variable geometry gas turbines is established based on the component method. Subsequently, a variable geometry gas turbine part-load performance optimization model is developed by combining the Differential Evolution Algorithm. Finally, the optimum combination of stagger angles for the compressor inlet vane and power turbine nozzle is calculated at each part-load condition. Compared to the VIGV and VAN control strategies, the [Formula: see text] control strategy proposed in this paper shows a higher stability margin and better economy. The [Formula: see text] control strategy maintains a constant exhaust temperature within a part load range from 20% to 100% with the stability margin exceeding 14%. In comparison with the VAN control strategy, the fuel flow rate decreases by 1.152% at 45% relative load power and by 3.435% at 20.0% relative load power with the [Formula: see text] control strategy.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3