Binary liquid metal–organic Rankine cycle for small power distributed high efficiency systems

Author:

Bombarda Paola1,Invernizzi Costante2

Affiliation:

1. Department of Energy, Polytechnic of Milan, Milano, Italy

2. Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy

Abstract

There is a common interest in the distributed power generation: generally for the combined production of electrical and thermal energy and often, although not necessarily, in association with renewable energies as heat sources for the prime mover. For example, in the field of distributed concentrated solar power generation of small size, the gas engine technology now seems to be prevailing (Stirling engines operating at maximum temperatures of 600–800 ℃, with peak net efficiencies at 20–30% and power up to several kilowatts are commonly considered). Organic Rankine engines, fed by biomass, in the power range of about 1 MW are actually a standard. From a strictly thermodynamic point of view, the binary cycle technology, accomplished by alkaline metal Rankine cycle as the topping cycle and a Rankine cycle with organic fluid as the bottoming cycle, could be an advantageous alternative. By their very nature, Rankine cycles have good thermodynamic qualities and, potentially, their thermodynamic performance, for the same maximum and minimum temperatures, could be better than that of a gas cycles. This paper discusses the possibility of adopting binary cycles with a power level in the order of tens of kilowatts. Following an overview of the characteristics of alkaline metals and a look at the possible organic fluids that can be employed in Rankine engines at high temperature (400 ℃), assuming a limit condensation pressure of 0.05 bar, the thermodynamic efficiency of binary cycles was evaluated and the preliminary sizing of turbines was discussed. The results (e.g. a net cycle efficiency of around 0.46, with maximum temperature of 800–850 ℃) appear encouraging, even though setting up the systems may be far from easy. For instance, there are difficulties due to the extremely high volumetric expansion ratios of bottoming cycles (400–600, an order of magnitude larger than those of the topping cycles with alkaline metals that we considered), which are moreover associated with a very low minimum pressure and elevated number of revolutions of the turbomachinery (50,000–200,000 r/min). Without doubt, the design tends to be easier as the power levels increase and the minimum condensation pressure for the bottoming cycle rises. Although the authors know of no activity in progress on binary cycles at present, the interesting prospects suggest the topic deserves further study and research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3