Study of cooperative wake control for multiple wind turbines under variable wind speeds/directions

Author:

Zhang Bowen1ORCID,Xu Jian1,Luo Wei1ORCID,Luo Zhaohui1,Wang Longyan12ORCID

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China

2. Institute of Fluid Engineering Equipment, JITRI, Jiangsu University, Zhenjiang, China

Abstract

In the wind farm control field, wind turbines are normally manipulated to maximize the individual power production which is named the greedy control. However, this greedy control method can lead to massive losses of total wind farm power production, mainly caused by the wake interference between multiple wind turbines. To this end, the cooperative wake control, which seeks the maximum total power production by coordinating each individual wind turbine at the global optimum operation point, can greatly improve the wind farm output performance. In this paper, we investigate the effectiveness of two different cooperative wake control strategies, i.e., instantaneous control and wind-interval based (WIB) control under variable wind speeds/directions scenario. These two cooperative control strategies are achieved based on the power de-rating operation to the upstream wind turbines. Taking three in-line wind turbines as an example, the control parameters of the two upstream wind turbines are cooperatively optimized while the downstream third wind turbine operates at the maximum power coefficient. To account for the multiple wind turbines wake interference, an artificial neural network (ANN) wake model characterized by the fast computational efficiency and great accuracy, in combination with the best wake superposition model chosen to quantify multiple wake effect, is proposed for the control optimization. By comparing to the baseline greedy control, it shows that both cooperative control strategies are effective in improving the power production of the wind farm. More specifically, the WIB control can maintain the power production at the same level of instantaneous control with a maximum difference less than 3%, while it reduces the operating difficulty to a large extent which greatly facilitates its application under realistic more complex wind scenarios.

Funder

Postdoctoral Science Foundation of Jiangsu Province

High-level Talent Research Foundation of Jiangsu University

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3