Review of Mesoscale Wind-Farm Parametrizations and Their Applications

Author:

Fischereit JanaORCID,Brown Roy,Larsén Xiaoli GuoORCID,Badger JakeORCID,Hawkes Graham

Abstract

AbstractWith the ongoing expansion of wind energy onshore and offshore, large-scale wind-farm-flow effects in a temporally- and spatially-heterogeneous atmosphere become increasingly relevant. Mesoscale models equipped with a wind-farm parametrization (WFP) can be used to study these effects. Here, we conduct a systematic literature review on the existing WFPs for mesoscale models, their applications and findings. In total, 10 different explicit WFPs have been identified. They differ in their description of the turbine-induced forces, and turbulence-kinetic-energy production. The WFPs have been validated for different target parameters through measurements and large-eddy simulations. The performance of the WFP depends considerably on the ability of the mesoscale model to simulate the background meteorological conditions correctly as well as on the model set-up. The different WFPs have been applied to both onshore and offshore environments around the world. Here, we summarize their findings regarding (1) the characterizations of wind-farm-flow effects, (2) the environmental impact of wind farms, and (3) the implication for wind-energy planning. Since wind-farm wakes can last for several tens of kilometres downstream depending on stability, surface roughness and terrain, neighbouring wind farms need to be taken into account for regional planning of wind energy. Their environmental impact is mostly confined to areas close to the farm. The review suggests future work should include benchmark-type validation studies with long-term measurements, further developments of mesoscale model physics and WFPs, and more interactions between the mesoscale and microscale community.

Funder

Carbon Trust

ForskEL/EUDP

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3