Multi-objective optimization of dual-arc blades in a squirrel-cage fan using modified non-dominated sorting genetic algorithm

Author:

Yang Xiaopei1ORCID,Jiang Boyan1,Wang Jun1,Huang Yougen2,Yang Weigang2,Yuan Kemin2,Shi Xuna2

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, China

2. Ningbo Fotile Kitchen Ware Corp., Ltd, Ningbo, China

Abstract

In this study, a dual-arc profile parameterized by four geometric variables was designed to replace the original single-arc profile of a squirrel-cage fan used in a range hood, in order to improve the efficiency of the entire machine and the fan pressure. A modified Non-dominated Sorting Genetic algorithm coupled with a three-dimensional Reynolds-averaged Navier–Stokes computation is applied to search the optimum blade shape. Moreover, a relatively coarse but proven reliable grid model is employed to accelerate the optimization process, and a dynamic crowding distance is applied to improve the broad diversity of the Pareto front. The optimization results show that the optimal dual-arc blades are formed by a leading arc with a relatively smaller curvature and a trailing arc with a larger curvature, and the shape of the leading arc dominates the aerodynamic performance of the dual-arc blade. The blade schemes at two end of the Pareto front have increased the fan pressure and efficiency at the optimization point by 5.3% and 1.5%, respectively, but also result in a decline in another performance indicator. The best compromised solution in the middle of the Pareto front has improved the pressure by 2.6% without reducing the efficiency in the numerical calculation. Compared with the single-arc blade with the same inlet and outlet angle, the dual-arc blade has a higher fan pressure, but at the same time, the efficiency is negatively affected. Finally, the new impeller with optimized dual-arc blades is manufactured and tested, and the experimental results show an increment exceeds 2% in pressure and an unexpected slightly improvement in fan efficiency.

Funder

the National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3