Flow Capacity Optimization of a Squirrel Cage Fan with a New Rounded Rectangle Volute under Size Limitation

Author:

Xiong Jin1ORCID,Tang Jie1,Guo Penghua1ORCID,Li Jingyin1ORCID

Affiliation:

1. Department of Fluid Machinery and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Squirrel cage fans (SCFs) are widely used in a variety of household appliances. Due to the restriction on installation size, the design of high-efficiency SCFs with high flow capacities is an important topic. In this study, we proposed a novel rounded rectangle volute profile (RRVP) for the design of compact high-flow SCFs. At first, we used computational fluid dynamics (CFD) to simulate the aerodynamic performances of three SCFs having the same impeller but different volutes, which were the common logarithmic-spiral volute profile, the cutting volute profile, and the RRVP volute at the maximum flow rate working condition. The CFD simulations indicate that the fan with RRVP volute has the highest flow rate at the maximum flow rate working condition. Then, we proposed a parameterization method for the RRVP with 16 control variables. The multiobjective evolutionary algorithm based on decomposition (MOEA/D) and Kriging model was used to optimize the aerodynamic shape of the compact SCF with an RRVP volute. Twenty-three control variables were used in the multiobjective optimization process, including the optimization of the blade angles and the impeller position. Optimization results show that the maximum volumetric flow rate of the optimal SCF with an RRVP volute increases from 147.1 cubic feet per minute (CFM) to 191.1 CFM, and the fan efficiency also increases from 32.21% to 33.5%, compared with the original SCF with the common logarithmic-spiral volute. Two main factors were found to increase the flow capacity and efficiency of the optimal SCF under strict size constrains. First, the RRVP became smooth and large, which reduced the flow loss and increased the flow cross-section; second, the eccentrically mounted impeller of the optimal fan enlarged the flow section near the outlet of the volute.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3