An integrated data-driven surrogate model and thermofluid network-based model of a 620 MWe utility-scale boiler

Author:

Rawlins Brad Travis1ORCID,Laubscher Ryno2,Rousseau Pieter1

Affiliation:

1. Applied Thermofluid Process Modelling Research Unit, University of Cape Town, Department of Mechanical Engineering, Cape Town, South Africa

2. Department of Mechanical Engineering, Stellenbosch University, Stellenbosch, South Africa

Abstract

An integrated data-driven surrogate model and one-dimensional (1-D) process model of a 620 [ MWe] utility scale boiler is presented. A robust and computationally inexpensive computational fluid dynamic (CFD) model of the utility boiler was utilized to generate the solution dataset for surrogate model training and testing. Both a standard multi-layer perceptron (MLP) and mixture density network (MDN) machine learning architectures are compared for use as a surrogate model to predict the furnace heat loads and the flue gas inlet conditions to the convective pass. A hyperparameter search was performed to find the best MLP and MDN architecture. The MDN was selected for surrogate model integration since it showed comparable accuracy and provides the ability to predict the associated uncertainties. Validation of the integrated model against plant data was performed for a wide range of loads, and critical results were predicted within 5–8% of the measured results. The validated model was subsequently used to investigate the effects of using a poor-quality fuel for the 100% maximum continuous rating load case. The uncertainties predicted by the surrogate model were propagated through the integrated model using the Monte Carlo technique, adding valuable insight into the operational limits of the power plant and the uncertainties associated with it.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3