Affiliation:
1. Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
Abstract
Online condition-monitoring techniques that are used to reveal incipient faults before breakdowns occur are typically data-driven or model-based. We propose the use of a fundamental physics-based thermofluid model of a heat pump cycle combined with deep learning-based surrogate models and parameter identification in order to simultaneously detect, locate, and quantify degradation occurring in the different components. The methodology is demonstrated with the aid of synthetically generated data, which include the effect of measurement uncertainty. A “forward” neural network surrogate model is trained and then combined with parameter identification which minimizes the residuals between the surrogate model results and the measured plant data. For the forward approach using four measured performance parameters with 100 or more measured data points, very good prediction accuracy is achieved, even with as much as 20% noise imposed on the measured data. Very good accuracy is also achieved with as few as 10 measured data points with noise up to 5%. However, prediction accuracy is reduced with less data points and more measurement uncertainty. A “backward” neural network surrogate model can also be applied directly without parameter identification and is therefore much faster. However, it is more challenging to train and produce less accurate predictions. The forward approach is fast enough so that the calculation time does not impede its application in practice, and it can still be applied if some of the measured performance parameters are no longer available, due to sensor failure for instance, albeit with reduced accuracy.