Affiliation:
1. Turbomachinery and Propulsion Department, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium
Abstract
The measurement of unsteady pressures within the hot components of gas turbine engines still remains a true challenge for test engineers. Several high-temperature pressure sensors have been developed, but so far, their applications are restricted to unsteady wall static pressure measurements. Because of the severe flow conditions such as turbine inlet temperatures of 1700 °C and pressures of 50 bar or more in the most advanced aero-engine designs, few (if any) experimental techniques exist to measure the time-resolved flow total pressure inside the gas path. This article describes the measurements performed at the turbine exit of a military engine with a cooled fast response total pressure probe. The probe concept is based on the use of a conventional miniature piezo-resistive pressure sensor, located in the probe tip to achieve a bandwidth of at least 40 kHz. Due to the extremely harsh conditions, the probe and sensor are heavily water cooled. The probe was designed to be continuously immersed into the hot gas stream to obtain time series of pressure with a high bandwidth and therefore statistically representative average fluctuations at the blade passing frequency (BPV). The experimental results obtained with a second-generation prototype are presented. The probe was immersed into the engine through the bypass duct between turbine exit and flame-holders of the afterburner of a Volvo RM12 engine, at exhaust temperatures above 900 °C. The probe was able to resolve the BPV (∼17 kHz) and several harmonics up to 100 kHz.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献