Ultra-High-Sensitivity and -Stability Thin-Film Heat Flux Sensor Based on Transverse Thermoelectric Effect

Author:

Chen Hao1,Wang Yong2ORCID,Yi Zao1ORCID,Dai Bo1,Tang Bin3ORCID,Xu Xibin4,Yi Yougen5

Affiliation:

1. The State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China

2. School of Space Science and Physics, Shandong University, Weihai 264209, China

3. School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China

4. Faculty of Science, Yibin University, Yibin 644007, China

5. College of Physics and Electronics, Central South University, Changsha 410083, China

Abstract

In this study, we investigate the sensitivity properties of YBa2Cu3O7-δ thin films with a 15° tilting angle in relation to heat flux density. The films were prepared using the laser pulsed deposition (PLD) technique, and their characteristics were evaluated using various techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and infrared steady-state and laser transient calibration systems. The YBa2Cu3O7-δ films prepared in this study were found to be of good quality, exhibiting a single-phase structure with strict (001) orientation. Both the substrate and film diffraction peaks were sharp and consistent with the step-flow growth mode, indicating high crystalline quality. Ultra-high sensitivity in the range of 0 to 100 kW/m2, the maximum sensitivity is 230 μV/(kW/m2), and an uncertainty is only 3%. According to the infrared steady-state heat flux calibration system test, when the single output power of the quartz lamp array is 0.2 kW, 0.3 kW, 0.4 kW and 0.5 kW, the maximum output voltage is 0.19 mV, 0.41 mV, 0.63 mV and 0.94 mV, respectively, indicating that the output voltage of the sensor increases with the increase in heat flux, showing a good linear characteristic, and the fitting linearity is 0.99. Through the test of the laser transient thermal current calibration system, the sensors are found to have excellent response–recovery characteristics at 500 kHz and 1000 kHz fiber laser frequencies, and the maximum voltage output is 8.83 mV and 9.09 mV, respectively. Moreover, the component has excellent repeatability, and the maximum measurement error is only 1.94%. Our findings demonstrate the potential of YBa2Cu3O7-δ thin films for use in heat flux sensing applications.

Funder

National Natural Science Foundation of China

State Key Laboratory of Environmentally friendly Energy Materials, Southwest University of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3