A computational investigation of the effect of surface roughness on heat transfer on the stator endwall of an axial turbine

Author:

Lutum Ewald1,Cottier Francois1,Crawford Michael E2,Laveau Benoit3,Abhari Reza S3

Affiliation:

1. MTU Aero Engines AG, Munich, Germany

2. Siemens Energy, Inc., Orlando, FL, USA

3. Laboratory for Energy Conversion, ETH Zurich, Zurich, Switzerland

Abstract

A numerical investigation of the effect of stochastic surface roughness on vane endwall heat transfer was conducted. The effect of equivalent sand grain roughness height was explored and compared with available experimental data. Steady-state computations using ANSYS CFX 14.0 in conjunction with the shear stress transport turbulence model were performed. Computations were conducted for fully turbulent flow conditions, since this best reproduces the conditions for the corresponding measurements. Roughness measurements were conducted at different locations along the vane passage. Exploration of these measurements indicated roughness Reynolds number values from the transitional and fully rough regime. The roughness model supplied in CFX was applied to explore the impact of surface roughness on heat transfer. Numerical heat transfer results in the vane passage were determined from a set of computations at the same operating point consisting of an adiabatic and a heat flux calculation. Calculations were conducted with a systematic variation of equivalent sand grain roughness heights and compared with experimental data. Results are presented for smooth and rough wall calculations at two different flow conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3