Study on the inner flow mechanisms and unsteady force distribution of side channel pump

Author:

Adu-Poku Kofi Asamoah1,Zhang Fan12ORCID,Appiah Desmond13,Chen Ke1,Osman Fareed Konadu1,Acheaw Emmanuel1

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang, China

2. Wenling Research Institute of Fluid Machinery, Jiangsu University, Wenling, China

3. Department of Physics Education, University of Education, Winneba, Ghana

Abstract

Stability dynamics in pumps is a key problematic issue which needs to be critically looked at. For instance, in side channel pump, pressure fluctuations and unsteady forces characteristics are inevitable in the clearances and this strongly affects the flow and pressure stability. Therefore, the research work herein seeks to numerically investigate the pressure fluctuation intensity in the clearances and characterize the axial and radial forces distributions around the impeller under different blade suction angles. Three impeller schemes 1, 2, and 3 are modeled with blade suction angles 10°, 20°, and 30°, respectively. Based on the reliable standard SST k-ω turbulent flow model, the unsteady flow state of the side channel pump was obtained by numerical simulation and further verified by experiment results. Variations in amplitude and frequency at different monitoring points in the clearances were observed in both time and frequency domain for each impeller scheme. The findings elucidate that pressure fluctuation intensity in the clearances is significantly different for all the impeller schemes. Obvious asymmetrical distribution of fluctuation magnitudes was noticeable in the axial and radial clearance. Generally, the amplitude of pressure fluctuation intensity of impeller scheme 1 and 2 is substantially reduced compared to impeller scheme 3. Also, impeller scheme 1 exerts the smallest magnitude of axial and radial force. However, when the pump operates under impeller scheme 3, the amplitude of the forces increases significantly. This study provides a solid foundation for the reduction of pressure fluctuations, vibration, and noise performance in side channel pumps.

Funder

Special Supported Project of China Postdoctoral Science Foundation

Taizhou Science and Technology Project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3