Genotypic and Phenotypic Characterization of Acyclovir-Resistant Herpes Simplex Viruses Isolated from Haematopoietic Stem Cell Transplant Recipients

Author:

Stránská Růžena1,van Loon Anton M1,Polman Merjo1,Beersma Matthias FC2,Bredius Robbert GM3,Lankester Arjan C3,Meijer Ellen4,Schuurman Rob1

Affiliation:

1. Department of Virology, University Medical Centre Utrecht, The Netherlands

2. Department of Medical Microbiology, Leiden University Medical Centre, The Netherlands

3. Department of Paediatrics, Leiden University Medical Centre, The Netherlands

4. Department of Haematology, University Medical Centre Utrecht, The Netherlands

Abstract

Thirty-one herpes simplex virus type one (HSV-1) isolates from 12 haematopoietic stem cell transplant recipients with persistent HSV infections despite acyclovir (ACV) prophylaxis or treatment, were genotypically and phenotypically characterized. The relationship between drug susceptibility of the isolates and mutations in thymidine kinase (TK) and DNA polymerase (DNA pol) genes was examined. In all 12 patients, HSV infections were due to ACV-resistant, foscarnet-sensitive viruses. Out of 31 isolates examined, 23 were resistant and eight were sensitive to ACV; eight patients carried viruses with frameshift mutations in the TK gene (due to addition or deletion of single nucleotides in homopolymeric repeats). These mutations were found at codon 61 (G deletion, one patient), 146 (G insertion, five patients) and 153 or 185 (C deletion, one patient each). In four patients, viruses were selected during ACV therapy that contained novel amino acid substitutions in the TK gene (H58R, G129D, A189V, R216H, R220C). Their possible role in ACV resistance was further confirmed phenotypically and by the absence of any resistance-associated mutations in the DNA pol gene. These substitutions were located in ATP- or nucleoside-binding sites or in conserved regions of the TK gene. In addition, a single mutation, Q570R, in the δ-region C of the DNA pol gene, was identified in an isolate from a single patient with resistance to ACV. Our study confirms and expands previous data on genotypic changes associated with ACV resistance of HSV-1 clinical isolates.

Publisher

SAGE Publications

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3