Uridine in the Prevention and Treatment of Nrti-Related Mitochondrial Toxicity

Author:

Walker Ulrich A1,Venhoff Nils1

Affiliation:

1. Department of Rheumatology and Clinical Immunology, Medizinische Universitätsklinik, Freiburg, Germany

Abstract

Long-term side effects of antiretroviral therapy are attributed to the mitochondrial (mt) toxicity of nucleoside analogue reverse transcriptase inhibitors (NRTIs) and their ability to deplete mtDNA. Studies in hepatocytes suggest that uridine is able to prevent and treat mtDNA depletion by pyrimidine NRTIs [zalcitabine (ddC) and stavudine (d4T)] and to fully abrogate hepatocyte death, elevated lactate production and intracellular steatosis. Uridine was also found to improve the liver and haematopoietic toxicities of zidovudine (AZT), which are unrelated to mtDNA depletion, and to prevent neuronal cell death induced by ddC. Most recently, uridine was found to prevent the onset of a lipoatrophic phenotype (reduced intracellular lipids, increased apoptosis, mtDNA depletion and mt depolarization) in adipocytes incubated long-term with d4T and AZT. Various steps of mt nucleoside utilization may be involved in the protective effect, but competition of uridine metabolites with NRTIs at polymerase y or other enzymes is a plausible explanation. Pharmacokinetic studies suggest that uridine serum levels can be safely increased in humans to achieve concentrations which are protective in vitro (50–200 μM). Uridine was not found to interfere with the antiretroviral activity of NRTIs. Mitocnol, a sugar cane extract which effectively increases uridine in human serum, was beneficial in individual HIV patients with mt toxicity and is now being tested in placebo-controlled randomized trials. Until these data become available, the risk-benefit calculation of using uridine should be individualized. The current safety data justify the closely monitored use of uridine in individuals who suffer from mt toxicity but who cannot be switched to less toxic NRTIs.

Publisher

SAGE Publications

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3