Combustion kinetics of lignite preheated under oxygen-enriched conditions

Author:

Uğuz Özlem1,Haykiri-Açma Hanzade1,Yaman Serdar1ORCID

Affiliation:

1. Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, Istanbul, Turkey

Abstract

This study bases on the testing of the solid-state kinetic models to determine the combustion kinetics of thermally pretreated Turkish lignite (Adiyaman–Golbasi) in O2-enriched environment. The lignite sample was first preheated in a horizontal tube furnace at temperatures of 200°C, 400°C and 600°C that correspond to torrefaction, partly devolatilization and partly ashing temperatures. Oxidative environments that have the O2 concentrations of 21, 30, 40 and 50 vol.%. were created during this treatment by changing the ratio of O2/N2 in the binary gas mixtures. The solid residues remaining after oxidation were then subjected to non-isothermal combustion conditions in a thermal analyzer up to 900°C under dry air atmosphere. The conversion degrees calculated from the thermogravimetric analysis were used to establish the kinetic parameters based on the Coats–Redfern method. It was concluded that the first-order reaction model fits well for both the combustion of volatiles and the burning of the char. It was also seen that the concentration of O2 in the pre-oxidation stage plays an important role as treatment temperature also increases. Moreover, it was also concluded that the activation energies for the char burning regions of the samples treated at 200°C and 400°C differ seriously.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3