Enhancing the arch-fired low-NOx performance with a throat overfire air for lowering NOx and hopper overheating

Author:

Cheng Shuting1,Kuang Min1ORCID,Chen Jiaqi1,Qi Shengchen1

Affiliation:

1. Institute of Electromechanical and Energy Engineering, Ningbo University, Ningbo, China

Abstract

Upon the background of China's dual-carbon energy and environment strategies and the requirements of green and sustainable development in the new era, how to gradually reduce coal consumption while at the same time enhance the efficient and clean use of coal and reduce pollutant emissions is attracting more and more attention. For a 600-MWe arch-fired furnace facing persistent challenges of high NO x output and an overheating risk in hopper as firing anthracite, a cascade-arched low-NO x and high-efficiency configuration (CLHC) was taken as an alternative to the existing multiple-injection and multiple-staging combustion technique (i.e., the MIMSCT, denoted as the reference furnace or technique in this study). In particular, along the furnace height the CLHC's overfire air (OFA) position in the burnout zone has an important influence on the low-NO x performance due to the shrunk furnace-arch space and a short upper furnace. Aiming at evaluating the OFA-location effect and confirming the CLHC in resolving the above problems, industrial-scale experiments and modeling were performed in the reference furnace and thereafter, the low-NO x characteristics with the CLHC was simulated considering three different OFA locations of the upper-furnace OFA, throat OFA, and arch OFA. In the OFA-location elevated order, the blending position of OFA and the main upward gas first lowered and then elevated, while the OFA penetration, overall combustion performance, and major low-NO x accomplishment indexes related to NO x yield and burnout loss initially improved but then deteriorated. As a result, the medium throat OFA presented the optimal low-NO x merit among the three setups, with the unburnt combustible of 5.3% in fly ash alongside NO x yield of 660 mg/m3 (O2 = 6%), respectively. By comparison to the reference technique, the CLHC gained a 30% NO x reduction ratio without affecting burnout and greatly relieved the hopper overheating issue via reducing sharply its temperatures by 400 K, thereby confirming the CLHC's viability. This study provided guidance on the safe furnace operations and reduction of pollutant emissions, benefiting the efficient and environmentally friendly usage of low-quality coals in industrial-scale furnaces.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo Municipality

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3