Optimal sizing and energy management of a stand-alone photovoltaic/pumped storage hydropower/battery hybrid system using Genetic Algorithm for reducing cost and increasing reliability

Author:

Ghanjati Chaima1ORCID,Tnani Slim1

Affiliation:

1. LIAS-ENSIP, University of Poitiers, Poitiers, France

Abstract

In this paper, a genetic algorithm is applied to optimize the sizing of an autonomous renewable energy multi-source system for reliable and economical supply of energy. The multi-source system is composed of a photovoltaic generator, a pumped storage hydropower system and a battery. The system will power public lighting and operate a garden fountain in the Botanical Garden, located in the Alexandre Aibéo Park in Covilhã (Portugal). Solar irradiance is initially simulated for a reference photovoltaic capacity (25 kWp) over one year by the PVsyst software for the city of Covilhã. Two objective functions are used for sizing optimization: the loss of power supply probability (LPSP) and the levelized cost of energy (LCE). The LCE takes into account the capital cost, the replacement cost and the cost of operation and maintenance. The genetic algorithm is used to determine the best configuration of the different subsystems (photovoltaic generator capacity, upper water reservoir capacity and battery capacity). The originality of this work lies in the combination of two storage elements with different dynamics, the introduction of an adapted energy management strategy (EMS) allowing to manage energy flows between the different subsystems and to control the process of charging/ discharging storage elements, and multi-objective optimization (considering technical and economic criteria) of the sizing of the autonomous photovoltaic/pumped storage hydropower/ battery hybrid system using genetic algorithm.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3