Review on reliability assessment of energy storage systems

Author:

Yan Xiaohe1ORCID,Li Jialiang1,Zhao Pengfei2,Liu Nian1,Wang Liangyou3,Yue Bo3,Liu Yanchao4

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing China

2. State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China

3. China Three Gorges Corporation Wuhan China

4. Science and Technology Research Institute China Three Gorges Corporation Beijing China

Abstract

AbstractAs renewable energy, characterised by its intermittent nature, increasingly penetrates the conventional power grid, the role of energy storage systems (ESS) in maintaining energy balance becomes paramount. This dynamic necessitates a rigorous reliability assessment of ESS to ensure consistent energy availability and system stability. The authors provide a review of the existing research on ESS reliability assessment, encompassing various methods, models, reliability indicators, and offers an analysis of future research trends in ESS reliability. Firstly, the authors summarise the different types of ESS and their characteristics, analysing the trends in ESS reliability research and the unique characteristics of ESS compared to conventional power systems. Secondly, the methods used for the assessment are reviewed, including Markov methods, generalised generating functions, Monte Carlo simulations etc. The shortcomings and characteristics of these methods are discussed. The key reliability indicators, such as Mean Time Between Failures and Mean Time to Repair are emphasised. The applied role of reliability studies is summarised. Finally, the perspective of new research trends in ESS reliability assessment are identified, especially the integration of artificial intelligence and machine learning, and emphasises their potential to further improve the robustness and effectiveness of ESS reliability.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3