Performance of the autoregressive integrated moving average model with exogenous variables statistical model on the intraday market for the Denmark-West bidding area

Author:

Lucic Marko1,Xydis George1ORCID

Affiliation:

1. Department of Business Development and Technology, Aarhus University, Herning, Midtjylland, Denmark

Abstract

This article aims to investigate whether a statistical model known as Autoregressive Integrated Moving Average with Explanatory Variables can aid better predictability of volume-weighted average electricity prices compared to a commonly used forecasting method. This analysis was conducted for a specific bidding area, the Denmark-West bidding area (DK1). Autoregressive integrated moving average model with exogenous variable's performance was tested on the DK1 intraday market over a two-year period starting from 1 January 2019 until 31 December 2020. An explanatory variable used to support better the accuracy of the forecast is the day-ahead price for a corresponding intraday delivery hour. To ensure the validity of the paper, a well-known forecasting methodology was applied, and the results of the analysis show superior performance over the benchmark forecasting method. The autoregressive integrated moving average model with exogenous variables model developed was found to significantly outperform other commonly used forecasting methods, with an average mean absolute percentage error of 1.5%. The model was able to accurately predict intraday volume-weighted average prices up to 24 h in advance, using only publicly available data on day-ahead prices and historical intraday prices. Energy traders and other market players may find the developed autoregressive integrated moving average model with exogenous variables model to be a useful resource when looking to make more informed decisions in the intraday market.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3