Analytical Explicit Formulas of Average Run Length of Homogenously Weighted Moving Average Control Chart Based on a MAX Process

Author:

Sunthornwat Rapin1,Sukparungsee Saowanit2ORCID,Areepong Yupaporn2ORCID

Affiliation:

1. Industrial Technology and Innovation Management Program, Faculty of Science and Technology, Pathumwan Institute of Technology, Bangkok 10330, Thailand

2. Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

Statistical process control (SPC) is used for monitoring and detecting anomalies in processes in the areas of manufacturing, environmental studies, economics, and healthcare, among others. Herein, we introduce an innovative SPC approach via mathematical modeling and report on its application via simulation studies to examine its suitability for monitoring processes involving correlated data running on advanced control charts. Specifically, an approach for detecting small to moderate shifts in the mean of a process running on a homogenously weighted moving average (HWMA) control chart, which is symmetric about the center line with upper and lower control limits, is of particular interest. A mathematical model for the average run length (ARL) of a moving average process with exogenous variables (MAX) focused only on the zero-state performance of the HWMA control chart is derived based on explicit formulas. The performance of our approach was investigated in terms of the ARL, the standard deviation of the run length (SDRL), and the median run length (MRL). Numerical examples are given to illustrate the efficacy of the proposed method. A detailed comparative analysis of our method for processes on HWMA and cumulative sum (CUSUM) control charts was conducted for process mean shifts in many situations. For several values of the design parameters, the performances of these two control charts are also compared in terms of the expected ARL (EARL), expected SDRL (ESDRL), and expected MRL (EMRL). It was found that the performance of the HWMA control chart was superior to that of the CUSUM control chart for several process mean shift sizes. Finally, the applicability of our method on a HWMA control chart is provided based on a real-world economic process.

Funder

Thailand Science Research and Innovation Fund

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3