Lasso Regularization for Selection of Log-linear Models: An Application to Educational Assortative Mating

Author:

Bucca Mauricio12,Urbina Daniela R.32

Affiliation:

1. European University Institute, Florence, Tuscany, Italy

2. These authors contributed equally to this manuscript.

3. Princeton University, Princeton, NJ, USA

Abstract

Log-linear models for contingency tables are a key tool for the study of categorical inequalities in sociology. However, the conventional approach to model selection and specification suffers from at least two limitations: reliance on oftentimes equivocal diagnostics yielded by fit statistics, and the inability to identify patterns of association not covered by model candidates. In this article, we propose an application of Lasso regularization that addresses the aforementioned limitations. We evaluate our method through a Monte Carlo experiment and an empirical study of educational assortative mating in Chile, 1990–2015. Results demonstrate that our approach has the virtue, relative to ad hoc specification searches, of offering a principled statistical criterion to inductively select a model. Importantly, we show that in situations where conventional fit statistics provide conflicting diagnostics, our Lasso-based approach is consistent in its model choice, yielding solutions that are both predictive and parsimonious.

Funder

Foundation for the National Institutes of Health

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3