Efficient Comparison Of Independence Structures Of Log-Linear Models

Author:

Strappa Jan12,Bromberg Facundo23

Affiliation:

1. Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD) – Universidad Tecnológica Nacional, Facultad Regional Mendoza , Rodríguez 273, CP 5500, Ciudad de Mendoza, Mendoza , Argentina

2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Ciudad de Mendoza, Mendoza , Argentina

3. Laboratorio DHARMa – Universidad Tecnológica Nacional, Facultad Regional Mendoza , Rodríguez 273, CP 5500, Ciudad de Mendoza, Mendoza , Argentina

Abstract

AbstractLog-linear models are a family of probability distributions which capture relationships between variables. They have been proven useful in a wide variety of fields such as epidemiology, economics and sociology. The interest in using these models is that they are able to capture context-specific independencies, relationships that provide richer structure to the model. Many approaches exist for automatic learning of the independence structure of log-linear models from data. The methods for evaluating these approaches, however, are limited, and are mostly based on indirect measures of the complete density of the probability distribution. Such computation requires additional learning of the numerical parameters of the distribution, which introduces distortions when used for comparing structures. This work addresses this issue by presenting the first measure for the direct and efficient comparison of independence structures of log-linear models. Our method relies only on the independence structure of the models, which is useful when the interest lies in obtaining knowledge from said structure, or when comparing the performance of structure learning algorithms, among other possible uses. We present proof that the measure is a metric, and a method for its computation that is efficient in the number of variables of the domain.

Funder

Argentinean Council for Scientific and Technological Research

Universidad Tecnológica Nacional

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference45 articles.

1. Categorical Data Analysis

2. Log-linear models for frequency data: sufficient statistics and likelihood equations;Haberman;Ann. Stat.

3. Graphical Models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3