The Augmented Social Scientist: Using Sequential Transfer Learning to Annotate Millions of Texts with Human-Level Accuracy

Author:

Do Salomé12ORCID,Ollion Étienne3ORCID,Shen Rubing23ORCID

Affiliation:

1. ENS-Paris/PSL (LATTICE), Paris, France

2. Sciences Po (Medialab), Paris, France

3. Institut Polytechnique de Paris (CREST), Palaiseau, France

Abstract

The last decade witnessed a spectacular rise in the volume of available textual data. With this new abundance came the question of how to analyze it. In the social sciences, scholars mostly resorted to two well-established approaches, human annotation on sampled data on the one hand (either performed by the researcher, or outsourced to microworkers), and quantitative methods on the other. Each approach has its own merits - a potentially very fine-grained analysis for the former, a very scalable one for the latter - but the combination of these two properties has not yielded highly accurate results so far. Leveraging recent advances in sequential transfer learning, we demonstrate via an experiment that an expert can train a precise, efficient automatic classifier in a very limited amount of time. We also show that, under certain conditions, expert-trained models produce better annotations than humans themselves. We demonstrate these points using a classic research question in the sociology of journalism, the rise of a “horse race” coverage of politics. We conclude that recent advances in transfer learning help us augment ourselves when analyzing unstructured data.

Funder

Svenska Vetenskapradet

Labex

Agence Nationale de la Recherche

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3