Seeded Topic Models in Digital Archives: Analyzing Interpretations of Immigration in Swedish Newspapers, 1945–2019

Author:

Hurtado Bodell Miriam1ORCID,Magnusson Måns12ORCID,Keuschnigg Marc13ORCID

Affiliation:

1. The Institute for Analytical Sociology, Linköping University, Norrköping, Sweden

2. Department of Statistics, Uppsala University, Uppsala, Sweden

3. Institute of Sociology, Leipzig University, Leipzig, Germany

Abstract

Sociologists are discussing the need for more formal ways to extract meaning from digital text archives. We focus attention on the seeded topic model, a semi-supervised extension to the standard topic model that allows sociological knowledge to be infused into the computational learning of meaning structures. Seed words help crystallize topics around known concepts, while utilizing topic models’ functionality to identify associations in text based on word co-occurrences. The method estimates a concept’s shared interpretation (or framing) via its associations with other frequently co-occurring topics. In a case study, we extract longitudinal measures of media frames regarding immigration from a vast corpus of millions of Swedish newspaper articles from the period 1945–2019. We infer turning points that partition the immigration discourse into meaningful eras and locate Sweden’s era of multicultural ideals that coined its tolerant reputation.

Funder

Vetenskapsrådet

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3