Mathematical morphology for microaneurysm detection in fundus images

Author:

Joshi Shilpa1,Karule PT1

Affiliation:

1. Department of Electronics Engineering, YCCE, Nagpur University, Nagpur, India

Abstract

Aim: Fundus image analysis is the basis for the better understanding of retinal diseases which are found due to diabetes. Detection of earlier markers such as microaneurysms that appear in fundus images combined with treatment proves beneficial to prevent further complications of diabetic retinopathy with an increased risk of sight loss. Methods: The proposed algorithm consists of three modules: (1) image enhancement through morphological processing; (2) the extraction and removal of red structures, such as blood vessels preceded by detection and removal of bright artefacts; (3) finally, the true microaneurysm candidate selection among other structures based on feature extraction set. Results: The proposed strategy is successfully evaluated on two publicly available databases containing both normal and pathological images. The sensitivity of 89.22%, specificity of 91% and accuracy of 92% achieved for the detection of microaneurysms for Diaretdb1 database images. The algorithm evaluation for microaneurysm detection has a sensitivity of 83% and specificity 82% for e-ophtha database. Conclusion: In automated detection system, the successful detection of the number of microaneurysms correlates with the stages of the retinal diseases and its early diagnosis. The results for true microaneurysm detection indicates it as a useful tool for screening colour fundus images, which proves time saving for counting of microaneurysms to follow Diabetic Retinopathy Grading Criteria.

Publisher

SAGE Publications

Subject

Ophthalmology,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning based MA detection with modified ResNet-50;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2024-06-09

2. Automatic detection of microaneurysms using a novel segmentation algorithm based on deep learning techniques;Computational Intelligence;2023-06-13

3. Automatic Microaneurysyms Detection using Deep Learning from Fundus Images;2023 4th International Conference for Emerging Technology (INCET);2023-05-26

4. Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models;Multimedia Tools and Applications;2023-03-27

5. Automatic Detection of Microaneurysms in Fundus Images;International Journal of Software Innovation;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3