Automatic detection of microaneurysms using a novel segmentation algorithm based on deep learning techniques

Author:

Monisha Birlin T.1,Divya C.1,John Livingston J.2

Affiliation:

1. Centre for Information Technology and Engineering Manonmaniam Sundaranar University Tirunelveli Tamil Nadu India

2. Department of Computer Science Engineering Kamaraj College of Engineering and Technology Virudhunagar Tamil Nadu India

Abstract

AbstractMicroaneurysms is the first stage of diabetic retinopathy (DR) and it plays a vital role in the computerized diagnosis. However, it is difficult to automatically detect microaneurysms in fundus images due to the complicated background and various illumination reasons. The motivation behind this, is the number of increases in diabetic patients is very large when compared with the number of ophthalmologists. The FSCA‐UNET (Frequency Spatial Channel Attention UNET) segmentation model, is proposed and it is an improvement over UNET. We first use the frequency channel attention mechanism to analyze the features that were extracted from the first stage of the convolution layer, and we obtain good results. Then, we included a spatial attention map with frequency attention, also known as FSCA‐UNET, which makes use of inter‐spatial connections between features. Our deep neural model with an encoder‐decoder structure termed FSCA‐UNET produced more accurate results. Our novel algorithm outdated the performance measures of the existing segmentation algorithms. The proposed segmentation algorithm was trained and tested on Indian Diabetic Retinopathy Image Dataset (IDRiD), and E‐ophtha Dataset and we got promising results in terms of sensitivity, specificity, dice coefficient, precision, F1 score, and accuracy.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3