Affiliation:
1. Department of Economics, University of Toledo. Toledo OH 43606, USA,
Abstract
Spatial econometrics has relied extensively on spatial autoregressive models. Anselin (1988) developed a taxonomy of these models using a regression model framework and maximum likelihood estimation methods. A Bayesian approach to estimating these models based on Gibbs sampling is introduced here. It allows for non-constant variance over space taking an unspecified form and outliers in the sample data. In addition, estimates of the non-constant variance at each point in space allow inferences regarding the spatial nature of heteroskedasticity and the position of outliers.
Subject
General Social Sciences,General Environmental Science
Cited by
212 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献