Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors

Author:

Li Tengjun1ORCID,Zhang Zhikang1,Song Yunquan1

Affiliation:

1. College of Science, China University of Petroleum, Qingdao 266580, China

Abstract

This study addresses the problem of parameter estimation in spatial autoregressive models with missing data and measurement errors in covariates. Specifically, a corrected likelihood estimation approach is employed to rectify the bias in the log-maximum likelihood function induced by measurement errors. Additionally, a combination of inverse probability weighting (IPW) and mean imputation is utilized to mitigate the bias caused by missing data. Under several mild conditions, it is demonstrated that the proposed estimators are consistent and possess oracle properties. The efficacy of the proposed parameter estimation process is assessed through Monte Carlo simulation studies. Finally, the applicability of the proposed method is further substantiated using the Boston Housing Dataset.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program

Publisher

MDPI AG

Reference36 articles.

1. Luo, G. (2023). Statistical Inference in Spatial Autoregressive Models with Complex Data, Beijing University of Technology.

2. Chen, Q. (2010). Advanced Econometrics and Stata Application, Higher Education Press.

3. Variable selection for ultra-high dimensional quantile regression with missing data and measurement error;Bai;Stat. Methods Med. Res.,2021

4. Li, W. (2020). Parameter Estimation of Spatial Autoregressive Models with Measurement Error, Yunnan University.

5. Anselin, L. (1992). SpaceStat Tutorial: A Workbook for Using SpaceStat in the Analysis of Spatial Data, West Virginia University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3